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Stiff Magnetofluid Cosmological Model 
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We intestigate the behavior of the magnetic field in a cosmological model filled 
with a stiff perfect fluid in general relativity. The magnetic field is due to an 
electric current along the x axis. The behavior of the model when a magnetic 
field is absent is also discussed. 

1. I N T R O D U C T I O N  

Anisotropic homogeneous universes play an important  role in under- 
standing some essential features of  the universe, such as the formation of 
galaxies during its early stages of  evolution. Jacobs (1968, 1969) investigated 
Bianchi type I cosmological models satisfying a barotropic equation of  state 
in the presence of a magnetic field. Collins (1972) made a qualitative analysis 
of  Bianchi type I models with a magnetic field. Roy and Prakash (1978) 
obtained a plane symmetric cosmological model  with an incident magnetic 
field for perfect fluid distributions. Recently Bali (1986) investigated a 
magnetized cosmological model in which expansion (0) in the model is 
proport ional  t o  0"11, the eigenvalue of shear tensor ~ for perfect fluid 
distributions. In this paper,  we treat a cosmological model filled with stiff 
fluid in the presence of  a magnetic field in general relativity. The distribution 
consists of  an electrically neutral perfect fluid with an infinite electrical 
conductivity in the presence of a magnetic field. 

Let us consider an anisotropic homogeneous universe in the form 

ds 2 = A2(  dx  2 - dt  2) + B 2 dy 2 + C 2 dz ~ (1) 

where the metric potentials are functions of  time alone. The energy- 
momentum tensor is taken into the form 

T~ = (e + p )v , v  3 + p ~  + E~ (2) 
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where E~ is the electromagnetic field given by Lichnerowicz (1967): 

Eg = ~Z[Ihl2(v,v s + 1 ~ )  _ h~h j] (3) 

In  the above, e is the density, p is the presssure, and v j is the flow vector 
satisfying 

goviv j = -1  (4) 

/2 is the magnetic permeability and hi the magnetic flux vector defined by 

hi = ~ eoklFkl j (5) 

where Fk~ is the electromagnetic field tensor and 8ijkl the Levi-Civita tensor 
density. A semicolon stands for covariant differentiation. We assume that 
the coordinates are comoving, so that v ~ = 0 = v 2 = v 3 and v 4 = 1/A. We take 
the incident magnetic field to be in the direction of the x axis, so that h~ r 0, 
h2 = 0 = h3 = ha. This leads to F12 = F13 = 0, by virtue of  (5). We also find 
E l 4  = F24 = F34  = 0 due to the assumption of the infinite conductivity of  the 
fluid. Hence the only nonvanishing component  of  F~ s is F23. The first of  
Maxwell's equations 

Fis;k + Fsk;i + Fkij = 0 

leads to F23 = const = H (say). Hence 

h, = AH /12BC (6) 

The field equation for the line element (1) is 

1 ( B44 
B 

1( 4 
c 

1 ( B44 
A 2 B 

C44 B4C4 I A4B4+A4C4~ 
C BC AB AC / 

= 8"tr (p 2/.Z~C2) (7) 
H 2 

A44 4- =87r pd 
A 2~-~C i 

A44 k- =8r pq 2 
A 2 

1 {A4B4 A4C4+BoC4~ ( H E ) 
- ~ \  AB + AC BC /=81r eA2~ 

(8) 

(9) 

(10) 
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2. SOLUTION OF T H E  FIELD EQUATIONS 

Equations (7)-(10) are four equations in five unknowns, A, B, C, e, 
and p. For the complete determination of  the set, we assume that the model 
is filled with a stiff fluid of  perfect fluid distributions, so that we have e = p, 
which leads to 

( A4~ -}-A4(B4~-C4~----(B44"~-B4C4~ (11) 
A ] 4  A \ B  C ]  \ B BC ] 

From equations (7)-(9), we have 

( A4~ +A4(B4+C4)=B44-}  B4C4 8"n'n2A2 (12) 
A ]4 A \ B C ,] B BC 1iB2C 2 

and 

B44 C44 
- -  = 0  ( 1 3 )  

B C 

Equation (11) leads to 

A4 B4 L 
(14) 

A B BC 

where L is a constant of integration. From equations (11) and (12), we have 

B44.+ B4C4 4"lrH2a 2 (15) 
B BC 12B2C 2 

which leads to 

K2A 2 
(B4C)a - - = 0  (16) 

BC 

where 

K 2 = 4"rgH2/l~ (17) 

Putting BC =tx and B / C  = v in (13) and (16), we have 

u4 ) 2K2A 2 
%- u - -  = 0 ( 1 8 )  

4 /x 

and 

0 
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Equation (19) leads to 

/24 k 

v # 

where k is a constant of  integration. Using (18) and (19), we have 

##44 : 2K2A2 

From (21), we get 

A4 # 4  #444 

A 2# 2#4 4 

From equations (14), (20), and (22), we have 

where 

#~"~444 ~_ 2#  4 = 2 a  

#44 

a = L - k / 2  

Putting #4 = f ( # )  in (23), we have 

#( f f"+ f'2)+ 2 f f '=2af '  

which leads to 
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(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

#ff '+ = ~ -  (2a f )  (26) 
0# 

which on integration leads to 

i~ff'+ f2/2 = 2a f +  fl (27) 

where 13 is a constant of integration. From equation (27), we have 

l ( f - 2 a  + y)2~/~-, 
# - ( f - 2 a  - 7) 2~/~+1 (28) 

where I is a constant of  integration and 3' = (4a2+2f l )  1/2. From equations 
(20) and (28), we have 

v= N (  f - 2 a  + y'] k/" 
\ f -  2a - y ]  (29) 

where N is a constant of integration. From (22), (28), and (29), we get 

( ~, + f -  2~ ),/2( ~, _ f +  2~ ),/2 
A = (30) 

2K 
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From (28) and (29), we have 

B 2 = txv = lN 

and 

( f  -2a+y)(2~+k~/~ -1 
( f  -- 2a -- y) (Z~+k)/'/-1 (31) 

C 2 = / ~ = / ( f - 2 a  + y)(2~-k)/~-1 
v N ( f - 2 a - y ) ( z ~ - k ) / v + l  (32) 

Hence,  the metric reduces to the form 

. d s 2 = ( Y + f - 2 a ) ( Y - f + 2 a ) {  , 2 df  2 

+ IN . ( f - 2 a  + y)( 2~+k~/~-~ 
( f - 2 a  - 7) (2~+k)/y+1 dy2 

I ( f - 2 a  + y)(2~-k)/~-i 
+ - -  

N ( f - 2 a  - y)(2~-k)/y+l dz2 (33) 

After suitable t ransformat ion  of  coordinates,  the metric (33) reduces to the 
form 

2 T 2 r / T x -4~/v ] 

~1~ k \ 7 t 1 /  ( 72 -- T2) 4 dT2 

_~_(7-T~-(2~+k)/Y l a d y 2  
\ y+ T /  7 2 -  T 

+ ( T - T ~  -(2~-g)/v 1 2dZ2 (34) 
\ 7 +  T /  7 2 -  T 

which, by  the t ransformat ion  T = Y cos 2Kr,  reduces to the form 

sin 2 2Kr dX 2 412 { 1 -- COS 2Kr~ -4~/v dr2 
ds2 = 72 4K z 7 \ f + ~ o s - ~ r ]  sin4 2 K r  

1 - cos 2Kr)  -(2~+k)/, 1 d y  2 
+ 1 + cos 2Kr] y 2 sin 2 2Kr 

+ (  !--cos 2Kr~-(2~-k)/" 1 
\ 1 + COS 2Kr] 72 sin 2 2Kr dZe (35) 

When  K --> 0 then the metric (35) reduces to the form 

ds2= r2(72 d X 2 - ~  dr2)+dy2+ dZ 2 (36) 

with 23 + 3' = 0 and k = 0. 
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3. SOME PHYSICAL AND GEOMETRICAL FEATURES 

The density for the model (34) is given by 

K 2 ( T -  3')4'~/'/+2 
8"n'g-12(32 T2) (T..b3")4o,/3,_2[(4a2-k2+123"2)-T2(l+12)] (37) 

The model has to satisfy the reality conditions Ellis (1971) 

(i) e + p > 0  
(ii) e + 3 p > 0  

Conditions (i) and (ii) together lead to 

T2< ( 4 a 2 -  k2+ 123' 2) 
(1 + 12) (38) 

From (38) we find that 

Bali and Tyagi 

40:2+ 123'2> k 2 (39) 

The scalar of expansion 0 calculated for the flow vector V i is given by 

K ( T + 4 a )  ( T - T )  2c'/~'+1 
0 - (3'2_ T2),/2 ( T +  3,) 2~/r-1 (40) 

The rotation w is identically zero and the shear is given by 

0 .2 K 2 ( T  - 3') 4a/T+2 ( 4 T 2 + 4 a 2 + 3 k 2 + S a T )  (41) 
- 312(3, 2 -  T2) (T+  3,)4a/y--2  

The nonvanishing components of the conformal curvature tensor are 

cl12 2 K 2 ( T - 3 , )  "'/~'+2 / 
- 312(32_ T2)(T+ 3')4~/r-2 

x (3 T 2 + 4a 2 _ 32 _ k 2 + 6a T + kT )  (42) 

Ke(  T - 3 , )  4~/~+2 

C13 - 312(3, 2 - T2)( T +  3,) 4~/,-2 

x (3 T2+4a  2 -  32_ k 2 + 6 a T  - kT )  (43) 

. 2 K 2 (  T -  3') 4./;,+2 
C~33 -312(32_ T 2 ) ( T +  3')44/,-2 

x (3 T 2 + 4 a  2 - 32 _ k2+ 6aT)  (44) 

From (40), we find that the model will represent an expanding universe 
when 1 < 0. However, the expansion in t hemode l  stops when either T = 3' 
or T = - 4 a .  The effect of  a magnetic field is to cause the model to expand 
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up to a finite interval of time. The magnetic field introduces inhomogeneity 
in density. The model represents an expanding, shearing, nonrotating, and 
geodetic universe in general. The space-time is Petrov type D when k = 0 
and nondegenerate Petrov type I otherwise. Since limr_.oo (0"/0)~ 0, the 
model does not approach isotropy for large values of T. 

In the absence of a magnetic field, the space-time reduces to type D. 
Also, since limT_,o~(cr/O)~O, the model does not approach isotropy for 
large values of T in this case also. When K-O, Oo-3,/lr, which shows 
that the expansion in the model stops for large values of T in the absence 
of a magnetic field. 
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